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Abstract—A waveguiding configuration consisting of a semicon-
ductor nanowire embedded in a dielectric-coated V-shaped metal
groove is presented. The modal properties of the fundamental
quasi-TE hybrid plasmonic mode are investigated at the wave-
length of 1550 nm. Simulation results reveal that by tuning the size
of the nanowire, the hybridization between the dielectric mode,
and plasmonic mode could be effectively controlled. Through ap-
propriate design, the hybrid mode could be strongly localized in the
nanowire and the gap regions on each side, featuring both tight-
mode confinement and low propagation loss. Besides, the com-
promise between confinement and loss could also be balanced by
controlling the angle or depth of the metal groove. Moreover, it
is found that the hybrid mode could exist for a wide geometrical
parameter range, even when the corresponding metal groove by
itself does not support a guided channel plasmon polariton mode.
The proposed hybrid structure is technologically simple and com-
patible with planar fabrication methods while avoiding alignment
errors.

Index Terms—Optical waveguides, optical planar waveguides,
plasmons.

I. INTRODUCTION

SURFACE plasmon polariton (SPP) structures combining
the size of nanoelectronics and the speed of microphoton-

ics are proposed as a promising solution for the next genera-
tion, highly integrated photonic components and circuits [1].
Although a wide range of SPP-based waveguides and compo-
nents have been theoretically proposed, a less number of them
have been experimentally demonstrated because of the huge
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loss caused by the metallic structure and the stringent practi-
cal fabrication requirements [2]. The long-range SPP (LR-SPP)
waveguides are among one of the few candidates so far that
have demonstrated the realization of complex photonic com-
ponents and on-chip integrations [3], [4], mainly due to their
ultralow propagation loss. However, their rather weak confine-
ment with mode size comparable to that of the conventional low-
index contrast dielectric waveguides renders great challenges for
large-scale integrations. One of the promising candidate for ef-
ficient guiding and confining SPP waves at the subwavelength
scale with relatively low propagation loss is the channel plas-
mon polariton (CPP) waveguides in the form of a V-shaped or
U-shaped channel milled on a metallic substrate [5]–[10]. CPP
waveguides could balance the tradeoff between the propagation
loss and mode confinement to a certain extent. The subwave-
length field confinement has enabled the realization of various
integrated photonic components, including Y-splitters, Mach–
Zehnder interferometers, waveguide-ring resonators, add-drop
multiplexers, and Bragg grating filters [11], [12]. Another attrac-
tive advantage of the CPP waveguides and components is their
compatibility with standard planar fabrication techniques (e.g.,
using the focused-ion beam (FIB) milling [11] or combined
UV and nanoimprint lithography methods [13]). In contrast to
other SPP counterparts that may require relatively strict fabri-
cation condition and complicated fabrication procedures, CPP
waveguides are relatively simple to make [11] and also offer
compatibility with mass production [13], hence making them
promising candidates for various applications.

On the other hand, recent advancement in novel plasmonic
waveguiding configurations has led to the proposal and demon-
stration of a host of hybrid plasmonic structures [14]–[28],
which combine the advantages of both semiconductor and plas-
monic waveguides and enable light transmission in the deep
subwavelength, low-index gap, promising to achieve long-range
propagation with tight-mode confinement. Various types of ac-
tive and passive plasmonic devices including nanolasers, cou-
plers, splitters, and ring resonators have also been theoretically
studied and experimentally demonstrated [29]–[36]. The char-
acteristics of the hybrid mode can be shifted from dielectric-
waveguide-mode-like toward SPP-like through tuning the hy-
bridization between the SPP modes and the waveguide modes
[14]. As the properties of the hybrid plasmonic modes are heav-
ily influenced by those of the corresponding uncoupled SPP
modes, employing a different metal nanostructure may result
in dramatically modified modal behavior. However, the steps to
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Fig. 1. Geometry of the hybrid metal groove waveguide.

fabricate complicated metallic nanostructures result in an ex-
tra complexity. Besides, for some of the hybrid structures, the
accurate alignment between different layers or patterns could
be challenging [15], [30], [37], and the fabrication errors may
adversely affect the guiding capability of the hybrid modes.

In this paper, we propose a novel hybrid plasmonic wave-
guide by integrating high-index semiconductor nanowires with
dielectric-coated metal groove plasmonic structures (also can
be named as dielectric-loaded groove waveguides [38]–[40]).
Through combining the strong mode confinement capability of
the CPP waveguide with the hybrid concept, the formed hybrid
plasmonic structure provides a new avenue to support highly
efficient hybrid plasmonic modes, which feature both strong
mode confinement and low-propagation loss at the telecom
wavelength. The proposed straight-type waveguide could be
fabricated using planar techniques. Similar to conventional CPP
waveguides, the FIB method could be used to create the metal
groove and the semiconductor nanowire is then placed inside
the groove after a thin dielectric layer is coated on the metallic
surface. Compared to many other plasmonic structures, fewer
fabrication steps are needed and it is alignment-free, alleviating
some of the undesirable fabrication imperfections. More com-
plex passive photonic components based on such a waveguide
may also be realized by employing micromanipulation process,
which had been widely used to build versatile nanowire-based
devices such as branch- [41] and loop-type structures [42] with-
out damaging the nanowires.

II. GEOMETRY AND MODAL PROPERTIES OF THE PROPOSED

HYBRID GROOVE WAVEGUIDES

The proposed hybrid metal groove waveguide shown in Fig. 1
consists of a high-index dielectric nanowire separated from a
V-shaped metallic substrate by a nanometer-scale-thick low di-
electric constant gap. Here, the nanowire is assumed to be em-
bedded inside the groove and supported in direct contact by the
homogeneous low-index dielectric coating layer. The radius of
the nanowire is r. The metal groove has a tip angle of θ and
a depth of h. The thickness of the low-index dielectric coating

Fig. 2. |E(x,y)| distributions of the fundamental quasi-TE plasmonic mode of
hybrid V-groove waveguides with different GaAs nanowires: (a)–(f) θ = 30◦,
t = 100 nm, (g)–(l) θ = 30◦, t = 20 nm.

layer is t. All the corners in the waveguiding structure are con-
sidered as rounded of a fixed 10-nm curvature radius for the
inner corners, while the outer corners have a curvature radius of
(10 + t) nm to keep a constant gap width. The modal charac-
teristics of the hybrid metal groove waveguides are investigated
at λ = 1550 nm. The metallic substrate is assumed to be sil-
ver (Ag), the high-index dielectric is GaAs, and the low-index
dielectric gap layer is silica (SiO2) with air as the cladding.
The permittivities of air, SiO2 , GaAs, and Ag are εc = 1, εg =
2.25, εd = 12.25, and εm = –129 + 3.3i [43], respectively. The
modal properties are investigated by means of the finite-element
method using COMSOL. The eigenmode solver is used with the
scattering boundary condition, which is a commonly employed
approach to mimic the necessary open boundary [14]. Conver-
gence tests are done to ensure that the numerical boundaries and
meshing do not interfere with the solutions.

The waveguide configuration firstly considered here, has a
deep enough metal groove (sufficiently large to avoid the edge
effects) with a tip angle of 30◦, to ensure that the structure
without the GaAs nanowire could support bound CPP modes [5],
[9], [44]. In such a case, as the fundamental hybrid plasmonic
mode results from the coupling between the CPP mode and the
dielectric mode, and is denoted as the hybrid CPP mode. We note
that the dielectric mode could also be coupled with higher order
CPP modes under certain geometries, but here we will only focus
our discussions on the properties of the fundamental hybrid CPP
mode. Simulation results of the electric field for the fundamental
quasi-TE hybrid mode with different geometries are shown in
Fig. 2. For configurations with a relatively thicker SiO2 layer
(e.g., t = 100 nm), increasing the GaAs nanowire radius from 20
to 250 nm results in an evolution of the hybrid mode behavior
from CPPlike to dielectric-like. When the nanowire is small
(r = 20 nm), the field is mainly guided at the bottom of the
metal groove [see the inset of Fig. 2(a)] similar as conventional
CPP waveguides. As the nanowire gets larger, the mode field
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begins shifting toward where the nanowire sits (e.g., r = 50 nm).
A further increase in the size of the nanowire results in more
field concentrated in both the nanowire and the adjacent gap
layer (e.g., r = 100, 150 nm), corresponding to the strongest
coupling between the CPP and dielectric mode. Finally, almost
all of the energy could be stored inside the nanowire when r
reaches certain values (e.g., r = 200 and 250 nm), where the
corresponding mode loss is very low. While for the case of
a thin silica layer (e.g., t = 20 nm), the trend of the mode
behavior with various nanowires is almost the same as that of
the thick layer. The only difference is that when the nanowire
is relatively large, the hybrid mode no longer displays either
dielectric- or CPP-like properties, but gets strongly confined in
the low-index gap, as clearly seen in Fig. 2(j)–(l). Simulation
also illustrates that further reduction of the thickness of the
SiO2 layer (e.g., t = 10 nm) would result in more pronounced
field enhancement in the gap and smaller mode area, indicating
tighter mode confinement could be achieved. Besides, for all
the studied cases, when the nanowire is rather large, the quasi-
TM mode could also be supported by the structure, which has
dielectric-like modal properties with relatively low-propagation
loss due to the less overlap of the mode profile with the metal
sidewalls.

The modal properties including the modal effective in-
dex Neff , propagation length Lp , and normalized mode area
Aeff /A0) of the fundamental hybrid plasmonic mode of our
proposed structures with different GaAs nanowires and SiO2
layers are shown in Fig. 3 as r varies from 20 to 250 nm. The
propagation length is given by Lp = λ/[4πIm(neff )]. A0 is the
diffraction-limited mode area in free space and defined as λ2 /4.
The effective mode area Aeff is calculated using

Aeff =
( ∫∫

W (r)dA

)2/( ∫∫
W (r)2dA

)
(1)

where the electromagnetic energy density W(r) is defined the
same as in [14], [45], [46]. Fig. 3(a) illustrates that Neff in-
creases monotonically when r gets bigger. Such a trend gets
more pronounced for relatively large GaAs nanowire with thin-
ner SiO2 layer, due to the stronger interaction between the plas-
monic and dielectric mode, while the propagation length and
mode area are shown to decrease first before they increase with
increased r. Extended propagation length and, correspondingly,
larger mode area are observed when the GaAs nanowire is ei-
ther very small or very large. When the GaAs nanowire has a
moderate size, strong coupling between the CPP mode and di-
electric mode occurs, where relatively short propagation length
with small mode area is expected. Under such conditions, be-
tween 30% and 40% of the total power could be squeezed into
the gaps on both sides of the GaAs nanowire, indicating tighter
mode confinement achieved in the low-index gap region than
the conventional hybrid plasmonic waveguide [14]. While on
the other hand a substantial portion of the total power could also
be stored in the high-index GaAs nanowire, and such power
ratio could be further increased, even up to nearly 90% (e.g.,
r = 250 nm), by employing a larger nanowire, which is also
higher than the corresponding conventional hybrid waveguide
on flat metal substrate. Such property may faciliate sufficient

Fig. 3. Dependence of the modal properties of the fundamental hybrid CPP
mode on the radius of the GaAs nanowire. (a) Modal effective index Neff .
(b) Propagation length Lp . (c) Normalized mode area Aeff /A0 . Dash-dotted
lines correspond to the CPP modes supported by the metal grooves with different
SiO2 coating layers.

modal overlap with the gain medium, beneficial for possible
applications like nanolasers [29], [33]. As also seen in Fig. 3(b)
and (c), for the considered range of geometry parameters, sub-
wavelength mode confinement could be achieved along with
relatively long-range propagation distance (around tens to hun-
dreds of microns), indicating nice guiding properties of the fun-
damental hybrid CPP mode.

The effects of metallic groove angle and groove depth on
modal properties are then investigated. Fig. 4 shows the calcu-
lated results of the Lp and Aeff /A0 with different θ and h. It
is illustrated that the waveguide with a deep metal groove has
lower propagation loss with a sharper θ, at the cost of a larger
mode area. Furthermore, for relatively large h (e.g., >1 μm for
θ = 16◦), the modal properties of the quasi-TE hybrid mode
quickly reach those under infinitely large h, indicating robust
waveguiding characteristics against the variation of the metal
groove when the groove is not too shallow. On the other hand,
when h is very small, the hybridization between the dielec-
tric nanowire mode and the SPP along the top edges becomes
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Fig. 4. Propagation length Lp of the studied hybrid plasmonic mode supported
by the waveguide with different h and θ (r = 100 nm, t = 20 nm), where the
inset shows the corresponding normalized mode area (Aeff /A0 ) and the electric
field distributions for different waveguiding structures.

Fig. 5. Field distributions of the dominant electric component when θ changes
from 0◦ to 180◦: Ex for the quasi-TE mode and Ey for the quasi-TM mode.
(r = t = 100 nm).

more pronounced, resulting in more field localized in the metal
structure, and thus increased the propagation loss. Further re-
duction of the groove depth causes the mode shifted toward
cutoff, where the effective index of the mode approaches that of
the air cladding’s, with dramatically reduced propagation loss
and increased mode area (also see the field distributions in the
inset).

Simulations also demonstrate that hybrid modes could be sup-
ported by the proposed waveguide configuration with a much
larger range of groove angles, even when the corresponding
metal structure does not support guided CPP modes. Here, the
electric field distributions of the fundamental hybrid modes are
shown in Fig. 5 with groove angle increasing from 0◦ to 180◦,
where the extreme case of 0◦ corresponds to a hybrid plasmonic
structure with a nanowire placed between two parallel verti-
cal metal walls separated by SiO2 buffer layers. Similar con-
figurations, which can be called hybrid metal–insulator–metal
waveguides, have been investigated both theoretically and ex-
perimentally in previous study [37], [47]–[51]. On the other
hand, when the angle reaches 180◦, the structure turns into a
conventional hybrid plasmonic waveguide with a flat metallic
substrate. Fig. 5 illustrates that when θ is small (e.g., <90◦), the

hybrid mode is quasi-TE-like with Ex as the dominant electric
component. On the other hand, for large angles (e.g., >90◦), the
fundamental mode exhibits a quasi-TM-like behavior. Here, as
the metal groove structure may not support a CPP mode with
large tip angles, the hybrid mode might be better named as a
hybrid trench mode instead of a hybrid CPP mode. At certain
critical angles (e.g., ∼90◦), the hybrid groove waveguide could
support both quasi-TE and quasi-TM hybrid plasmonic modes.
The aforementioned results illustrate that when θ varies within
the range of 0◦–180◦, the fundamental hybrid mode undergoes
a polarization change, indicating a transformation of hybrid TE
mode to hybrid TM mode. On the other hand, for more realis-
tic configurations with a finite groove depth and a sharp angle
(supporting hybrid quasi-TE mode), polarization rotation could
also be realized by continuously decreasing the groove depth.

Recent work has demonstrated that in contrast to the conven-
tional CPP waveguides, metal grooves with finite metal thick-
ness could support not only short-range CPP modes [52] with
even stronger mode confinement but also long-range ones with
ultralow-propagation loss [44]. Therefore, we expect that em-
ploying such a finite thick metal groove may provide new possi-
bilities for further improvement of the hybrid mode’s properties,
e.g., by coupling to the short-range CPP modes for tighter mode
confinement or further reducing the propagation loss by hy-
bridization with the long-range CPP modes, which may be the
focus of our futurestudy.

III. CONCLUSION AND DISCUSSION

In this paper, we have proposed and investigated a novel metal
groove-based hybrid plasmonic structure. The coupling between
the nanowire dielectric mode and the SPP mode supported by the
metallic sidewalls results in a tightly confined hybrid plasmonic
modes with relatively low transmission loss. The proposed novel
structure could be realized using simple fabrication procedures
and avoid some of the fabrication imperfections that may occur
in other hybrid plasmonic waveguide structures. Such compact
waveguides with nice optical performance could enable vari-
ous types of integrated photonic components as well as their
applications.
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